125 research outputs found

    Procedural weapons generation for unreal tournament III

    Get PDF

    An Integrated Framework for AI Assisted Level Design in 2D Platformers

    Full text link
    The design of video game levels is a complex and critical task. Levels need to elicit fun and challenge while avoiding frustration at all costs. In this paper, we present a framework to assist designers in the creation of levels for 2D platformers. Our framework provides designers with a toolbox (i) to create 2D platformer levels, (ii) to estimate the difficulty and probability of success of single jump actions (the main mechanics of platformer games), and (iii) a set of metrics to evaluate the difficulty and probability of completion of entire levels. At the end, we present the results of a set of experiments we carried out with human players to validate the metrics included in our framework.Comment: Submitted to the IEEE Game Entertainment and Media Conference 201

    ChatGPT and Other Large Language Models as Evolutionary Engines for Online Interactive Collaborative Game Design

    Full text link
    Large language models (LLMs) have taken the scientific world by storm, changing the landscape of natural language processing and human-computer interaction. These powerful tools can answer complex questions and, surprisingly, perform challenging creative tasks (e.g., generate code and applications to solve problems, write stories, pieces of music, etc.). In this paper, we present a collaborative game design framework that combines interactive evolution and large language models to simulate the typical human design process. We use the former to exploit users' feedback for selecting the most promising ideas and large language models for a very complex creative task - the recombination and variation of ideas. In our framework, the process starts with a brief and a set of candidate designs, either generated using a language model or proposed by the users. Next, users collaborate on the design process by providing feedback to an interactive genetic algorithm that selects, recombines, and mutates the most promising designs. We evaluated our framework on three game design tasks with human designers who collaborated remotely.Comment: (Submitted

    Volcano: An interactive sword generator

    Get PDF
    In this work, we introduce Volcano, a tool for the procedural generation of 3D models of swords. Unlike common procedural content generation tools, it exploits interactive evolution to reduce as much as possible the effort of the users during the generation process. Indeed, Volcano allows to forge the desired type of swords through a rather simple visual exploration of the design space. The 3D models generated with the tool can be directly used as game assets or further developed with a standard modeling software. A prototype of Volcano was tested by 30 users, including both students and game developers. The feedbacks received are very positive: tools like Volcano might be useful both for players, to create user contents, and for developers, to speed-up the design of game contents

    Chest X-Rays Image Classification from beta-Variational Autoencoders Latent Features

    Get PDF
    Chest X-Ray (CXR) is one of the most common diagnostic techniques used in everyday clinical practice all around the world. We hereby present a work which intends to investigate and analyse the use of Deep Learning (DL) techniques to extract information from such images and allow to classify them, trying to keep our methodology as general as possible and possibly also usable in a real world scenario without much effort, in the future. To move in this direction, we trained several beta-Variational Autoencoder (beta-VAE) models on the CheXpert dataset, one of the largest publicly available collection of labeled CXR images; from these models, latent features have been extracted and used to train other Machine Learning models, able to classify the original images from the features extracted by the beta-VAE. Lastly, tree-based models have been combined together in ensemblings to improve the results without the necessity of further training or models engineering. Expecting some drop in pure performance with the respect to state of the art classification specific models, we obtained encouraging results, which show the viability of our approach and the usability of the high level features extracted by the autoencoders for classification tasks.Comment: 8 pages, 5 figure

    Brain MRI Tumor Segmentation with Adversarial Networks

    Get PDF
    Deep Learning is a promising approach to either automate or simplify several tasks in the healthcare domain. In this work, we introduce SegAN-CAT, an approach to brain tumor segmentation in Magnetic Resonance Images (MRI), based on Adversarial Networks. In particular, we extend SegAN, successfully applied to the same task in a previous work, in two respects: (i) we used a different model input and (ii) we employed a modified loss function to train the model. We tested our approach on two large datasets, made available by the Brain Tumor Image Segmentation Benchmark (BraTS). First, we trained and tested some segmentation models assuming the availability of all the major MRI contrast modalities, i.e., T1-weighted, T1 weighted contrast-enhanced, T2-weighted, and T2-FLAIR. However, as these four modalities are not always all available for each patient, we also trained and tested four segmentation models that take as input MRIs acquired only with a single contrast modality. Finally, we proposed to apply transfer learning across different contrast modalities to improve the performance of these single-modality models. Our results are promising and show that not SegAN-CAT is able to outperform SegAN when all the four modalities are available, but also that transfer learning can actually lead to better performances when only a single modality is available

    Comparing Adversarial and Supervised Learning for Organs at Risk Segmentation in CT images

    Full text link
    Organ at Risk (OAR) segmentation from CT scans is a key component of the radiotherapy treatment workflow. In recent years, deep learning techniques have shown remarkable potential in automating this process. In this paper, we investigate the performance of Generative Adversarial Networks (GANs) compared to supervised learning approaches for segmenting OARs from CT images. We propose three GAN-based models with identical generator architectures but different discriminator networks. These models are compared with well-established CNN models, such as SE-ResUnet and DeepLabV3, using the StructSeg dataset, which consists of 50 annotated CT scans containing contours of six OARs. Our work aims to provide insight into the advantages and disadvantages of adversarial training in the context of OAR segmentation. The results are very promising and show that the proposed GAN-based approaches are similar or superior to their CNN-based counterparts, particularly when segmenting more challenging target organs

    Player Modeling

    Get PDF
    Player modeling is the study of computational models of players in games. This includes the detection, modeling, prediction and expression of human player characteristics which are manifested through cognitive, affective and behavioral patterns. This chapter introduces a holistic view of player modeling and provides a high level taxonomy and discussion of the key components of a player\u27s model. The discussion focuses on a taxonomy of approaches for constructing a player model, the available types of data for the model\u27s input and a proposed classification for the model\u27s output. The chapter provides also a brief overview of some promising applications and a discussion of the key challenges player modeling is currently facing which are linked to the input, the output and the computational model
    • …
    corecore